Towards a better language
for WAF Core Rule Set

CRS community summit 2018

Christian Treutler, Mirko Dziadzka

{christian,mirko}@ avinetworks.com

Agenda

* Who we are

* Why are we doing this?

* Why not ModSecurity”?

* |deas and Concepts
 Current status and next steps

e Questions and Discussion

* —This always means: ModSecurity — the language, not ModSecurity - the WAF Implementation

Who we are

* Mirko
* Developed WAF like components for banking in 2000
* Worked for WAF vendor(s) as lead engineer from 2005-2017
* Co-author of QWASP Paper: Use of Web Application Firewalls
* Christian
* Worked as Engineer + Product Manager for WAF vendor(s) since 2007

* Since 2017 working for Avi Networks WAF team

* WAF is based on ModSecurity 3.x with some heavy changes
* WAF is using OWASP CRS for base protection

https://www.owasp.org/index.php/Category:OWASP_Best_Practices:_Use_of_Web_Application_Firewalls

Why are we doing this?

* ModSecurity” is not ideal for a WAF for various reasons

* The Core Rule Set is a valuable resource, both for commercial and for
other open-source WAF's!?!

* The Core Rule Set should be in a format which can be consumed by
other WAF implementations!?

[2] for example lua-resty-waf, or a middleware input validation layer in your Django Web Stack

Why are we doing this?

OWASP
ModSecurity
Core Rule Set

Why are we doing this?

OWASP
ModSectHity-

Core Rule Set

Why are we doing this?

OWASP

Core Rule Set

Why are we doing this?

OWASP
Core Rule Set

Why are we doing this?

OWASP

Core Rule Set
+

ModSecurity Core Rule Set

Why not ModSecurity”?

* Assumptions:
* WAF should be configured in a declarative style and not programmed.

* In special cases, you need the power of a scripting language.

 ModSecurity” is too complex to be considered configuration or to
automatically convert it to other execution models.

* |t is not flexible enough to solve more complex problems. Lua support
solves this.

* If you want to read my full rant about it, read [1] or talk to me in the
next 2 days.

https://github.com/avinetworks/owasp-crs-technical-discussion/blob/master/language-draft.md

Why not ModSecurity”?

* Syntax — should never show this to a user

* Types (or the absence of types)
e List of strings is really missed
* No clear distinction between Number and String leads to subtle errors

e Chain rules

* Mostly used to

* a) extract part of the Requests into temp variables
* b) implement a logical AND for conditions

* Regex is PCRE based

* CRS is using PCRE extensions which are not available in other
implementations, for example python-re or Google re2 lib

|[deas and Concepts

* Current CRS contains rules which implement WAF functionality but
are not part of what we would consider a WAF CRS

* The concrete way of how the features below are implemented
* |P reputation, DOS protection

* anomaly detection, rule corellation
e Sampling, logging
* We believe that the other “interesting rules” can be expressed in an
easier and more declarative language.

* This is not a language to configure a specific WAF directly

l[deas and Concepts - Summary

* Have a declarative language which can describe (a subset of) current
Core Rule Set

* Have compiler to automatically convert rules from this language to

different WAF’s native languages, like ModSecurity.
* The goal is to create exactly the same rules CRS has today. This may need
some backend specific hints in the rules for the compiler.

/deas and Concepts - Summary

ModSecurity
Specific Rules

Compiler

Rules in Meta ModSecurity Rules in

Language Backend ModSecurity
Language

Rules in
A WAF XYZ
Backend

e format
repository

©
C
Q
=
C
(@)
o
LL

l[deas and Concepts — Language Spec

* Building Blocks are pluggable.

» Constants (maybe request dependent). Do we need variables?
* For the sake of discussion: A variable which is only set once is a constant.

Conditions

Actions

Rules

Control flow (explicit)

 Avoid state and state modification (get rid of setvar as much as
possible)

* We do not want to discuss syntax right now, so we use YAML for all
the examples.

|deas and Concepts - Constants

- define:
name: max_body_size
type: int
value: 32k

- define:
name: restricted_extensions
type: [string)

value:
— Ilasa"
— uasaxn
—_ onsdll
_— leSx"
transformation:
— l.-~{51}0|
- define:

- name: unix_shell_data
- type: [string]
- load: "unix-shell.data"

|deas and Concepts - Constants

- gefine:
name: max_body_size
type: int

value: 32Kk

- define:

name: restricted extensions

type: [string)
value:
"asa"
"asax"

- "“xsd"

- "xsx"
transformation:

- "o%{$1}"

- define:
- name: unix_shell_data
- type: [string]

- load: "unix-shell.data"

SecRule &TX:restricted extensions "@eq 0" \

"id:901164, phase:1, pass, nolog,\
setvar:'tx.restricted_extensions=.asa/ .asax/ .ascx/ .axd/ .backup/

.bak/ .bat/ .cdx/ .cer/ .cfg/ .cd/ .com/ .config/ .conf/ .cs/ .csproj/ .csr/

.dat/ .db/ .dbf/ .dll/ .dos/ .htr/ .htw/ .ida/ .idc/ .idg/ .inc/ .ini/ .key/ .licx/
Ink/ .log/ .mdb/ .old/ .pass/ .pdb/ .pol/ .printer/ .pwd/ .resources/

.resx/ .sql/ .sys/ .vb/ .vbs/ .vbproj/ .vsdisco/ .webinfo/ .xsd/ .xsx/"

l/deas and Concepts — Extract Data

e Chain rules are often used to extract data from the request
* This should be explicit

- define:
comment: extract the request extension, first chain from 912150
name: request_basename_extension
type: string
extract:
variable: REQUEST_BASENAME
pattern: /(\.[a-20-9]{1,10)})7%/

value: $1

l[deas and Concepts — Conditions

- condition:
- comment: check if the extension of the request is in the list of restricted extensions
variables:
- request_basename_extension
transformations:
- lowercase
operator: in
parameter: restricted_extensions

- condition:
- variables:
- ARGS
- REQUEST_HEADERS
operator: rx
parameter: /script>/

l[deas and Concepts — Actions

- actions:
- disable-rule: 12345
- remove-variable-from-rule:
variable: ARGS:password
rules: 1-9999999
- actions:
- block

- actions:
- block:
comment: do we really need to be this specific here?
reason: Content-Length header is required.
code: 411

/deas and Concepts — Rules

- rule:
id: 999999
meta:
phase: request # not sure if we need this
message: "Possible Foo attacks"
paranoia-level: 1
severity: CRITICAL # also be used to determine anomaly value
version: 1
ooe
tags:
- “application-multi*
conditions:
- variable:
- ARGS
transformations:
- removeSpaces
operator: rx
paramater: /some crazy regex/
actions:
- block

/deas and Concepts — Control Flow

conditions:
condition 1
- condition 2

- define
- rule

- rule

- define

Current status and next steps

* Proposal for language semantics, needs validation and iteration

e Python lib which can convert between ModSecurity™ rule format, an
internal object representation of these rules and an equivalent JSON

format.
* TODO:

* semi-automatically translating ModSecurity rules from the ModSecurity”

EeRpSresentation to the new meta language, apply this to a subset of current

* translator from this meta-language to ModSecurity*

* Implement an engine in Python to execute these new language directly as
proof of concept and for test integrations

Open Questions

* Will it work?
* What about a positive security model?

* What about test integration into FTW

* How make the regex more readable?

* Having a “readable version” and a automatically generated ,,optimized” regex
may help.

* Also, integrating test strings to the regexes which should or should not match
could help as better documentation

Questions and Discussion

e [1] https://github.com/avinetworks/owasp-crs-technical-discussion
* We would welcome any feedback and contributions

* We would love to talk to you about this or other ideas in the next
couple of days

https://github.com/avinetworks/owasp-crs-technical-discussion

